Asymptotic Similarities of Fourier and Riemann Coefficients

Chin-Hung Ching and Charles K. Chui
Department of Mathematics, Texas A \& M University, College Station, Texas 77843

Communicated by R. C. Buck

1. Introduction and Results

If a function f is Riemann integrable on the unit interval $[0,1]$, we define the Riemann coefficients of f as the errors

$$
r_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)-\int_{0}^{1} f
$$

In [2], it was observed that the asymptotic behavior of $r_{n}(f)$ is quite similar to that of the Fourier coefficient

$$
a_{n}(f)=\int_{0}^{1} f(t) e^{-i 2 \pi n t} d t
$$

of f. In this note, we give some precise results. In general, it seems that if the periodic extension of f from $[0,1$) to the real line \mathbb{R} is "smooth," then the coefficients $r_{n}(f)$ and $a_{n}(f)$ have the same rate of convergence to zero; otherwise, it is probably true that $a_{n}(f)$ converges to zero "faster" than $r_{n}(f)$ does-in the sense of Theorem 3 below. We first state the following known theorem.

Theorem A. (1) Iff satisfies a Lipschitz condition of order $\alpha, 0<\alpha<1$, say

$$
|f(x)-f(y)| \leqslant M|x-y|^{\alpha}
$$

for some $M<\infty$ and all $x, y \in[0,1]$, then both

$$
r_{n}(f)=O\left(1 / n^{\alpha}\right) \quad \text { and } \quad a_{n}(f)=O\left(1 / n^{\alpha}\right)
$$

(2) Iff is of bounded variation on [0, 1], then both

$$
r_{n}(f)=O(1 / n) \quad \text { and } \quad a_{n}(f)=O(1 / n)
$$

(3) If f is absolutely continuous on $[0,1]$ and $f(0)=f(1)$, then both

$$
r_{n}(f)=o(1 / n) \quad \text { and } \quad a_{n}(f)=o(1 / n)
$$

The proofs of (1) and (2) are similar and easy and can be found in [3, 4]. A proof of (3) was given in [1]. It should be noted that the above rates of convergence are sharp (cf. [2]). Let $C^{\beta}(\mathbb{R})$ be the collection of all β-times continuously differentiable functions on \mathbb{R} with $f(t)=f(1+t)$ for all t. We have the following theorem.

Theorem 1. Let $\beta \geqslant 1$ and $f \in C^{\beta-1}(\mathbb{R})$. If $f^{(\beta)}$ is of bounded variation on $[0,1]$, then

$$
r_{n}(f)=O\left(1 / n^{\beta+1}\right)
$$

If $f^{(\beta)}$ is absolutely continuous on $[0,1]$, and $f^{(\beta)}(0)=f^{(\beta)}(1)$, then

$$
r_{n}(f)=o\left(1 / n^{\beta+1}\right)
$$

It is known that the $a_{n}(f)$ have the same rates of decay as $r_{n}(f)$ in the above theorem and these rates cannot be improved (cf. [4]). We will show that the above rates of convergence of $r_{n}(f)$ to zero are also sharp, as in the following theorem.

Theorem 2. (1) There exist an $\epsilon_{0}>0$ and a function $f \in C^{\beta-1}(\mathbb{R})$ such that $f^{(\beta)}$ is of bounded variation on $[0,1]$ and

$$
\left|n^{\beta+1} r_{n}(f)\right| \geqslant \epsilon_{0}
$$

for some sequence $n=n_{k} \rightarrow \infty$.
(2) Let $\left\{\epsilon_{n}\right\}$ be any sequence of real numbers tending to zero. There exists a function $f \in C^{\beta-1}(\mathbb{R})$ such that $f^{(\beta)}$ is absolutely continuous on $[0,1]$, $f^{(\beta)}(0)=f^{(\beta)}(1)$ and

$$
\left|n^{\beta+1} r_{n}(f)\right| \geqslant \epsilon_{n}
$$

for some sequence $n=n_{k} \rightarrow \infty$.
It is clear that if f is continuous on $[0,1]$, then

$$
\left|a_{n}(f)\right| \leqslant \|\left. f\right|_{p}=\left\{\int_{0}^{1}|f|^{p}\right\}^{1 / p}
$$

for all n, where $1 \leqslant p<\infty$. Actually, for $1 \leqslant p \leqslant 2$, we even have the stronger inequality

$$
\sum_{n=\mathbf{1}}^{\infty} \frac{\left|a_{n}(f)\right|^{p}}{n^{2-p}} \leqslant C_{p}\|f\|_{p}^{p}
$$

for some constant C_{p} independent of f. However, for Riemann coefficients we have the following theorem.

Theorem 3. Let $1 \leqslant p<\infty$. For any positive integer n and any constant $C>0$, there exists a continuous function f on $[0,1]$ such that $\left|r_{n}(f)\right|>C\|f\|_{p}$.

But for $p=\infty$, it is clear that $\left|a_{n}(f)\right| \leqslant\|f\|_{\infty}$ and $\left|r_{n}(f)\right| \leqslant 2\|f\|_{\infty}$.

2. Proofs of the Above Results

Proof of Theorem 1. If $f \in C^{\beta-1}(\mathbb{R})$ and $f^{(\beta)}$ is of bounded variation on $[0,1]$, then

$$
\begin{align*}
a_{n}(f) & =\int_{0}^{1} f(t) e^{-i 2 \pi n t} d t=\frac{1}{(i 2 \pi n)^{\beta}} \int_{0}^{1} f^{(\beta)}(t) e^{-i 2 \pi n t} d t \\
& =\left(f^{(\beta)}(0)-f^{(\beta)}(1)\right) /(i 2 \pi n)^{\beta+1}+\frac{1}{(i 2 \pi n)^{\beta+1}} \int_{0}^{1} e^{-i 2 \pi n t} d f^{(\beta)}(t) \tag{1}
\end{align*}
$$

so that $\left|a_{n}(f)\right| \leqslant M / n^{\beta+1}$ for all n, with $M=\left|f^{(\beta)}(0)\right|+\left|f^{(\beta)}(1)\right|+V\left(f^{(\beta)}\right)$, where $V\left(f^{(\beta)}\right)$ denotes the total variation of $f^{(\beta)}$ on $[0,1]$. Hence,

$$
\begin{align*}
r_{n}(f) & =\frac{1}{n} \sum_{j=1}^{n} f\left(\frac{j}{n}\right)-\int_{0}^{1} f \\
& =\sum_{k=-\infty}^{\infty} \frac{1}{n} \sum_{j=1}^{n} a_{k}(f) e^{i 2 \pi j k / n}-a_{0}(f) \tag{2}\\
& =\sum_{k=-\infty}^{\infty} a_{k n}(f)-a_{0}(f) \\
& =\sum_{k=1}^{\infty}\left[a_{k n}(f)+a_{-k n}(f)\right] .
\end{align*}
$$

Therefore, by (1)

$$
\left|r_{n}(f)\right| \leqslant \frac{2 M}{n^{\beta+1}} \sum_{k=1}^{\infty} \frac{1}{k^{\beta+1}}
$$

If, in addition $f^{(\beta)}$ is absolutely continuous on $[0,1]$ and $f^{(\beta)}(0)=f^{(\beta)}(1)$, then by (2) and (1) we have

$$
\begin{aligned}
\left|r_{n}(f)\right| & =\left|\sum_{k=1}^{\infty}\left[a_{k n}(f)+a_{-k n}(f)\right]\right| \\
& \leqslant \frac{1}{n^{\beta+1}} \sum_{k=1}^{\infty} \frac{2}{(2 \pi k)^{\beta+1}}\left|\int_{0}^{1} f^{(\beta)}(t) \cos 2 \pi k n t d t\right|
\end{aligned}
$$

Since the integrals inside the absolute value signs tend to zero uniformly on k, we have $n^{\beta+1} r_{n}(f) \rightarrow 0$. This completes the proof of Theorem 1.

Proof of Theorem 2. For $\beta \geqslant 1$, we let

$$
f(x)=\sum_{j=0}^{\infty} \frac{(-1)^{j} \cos [(2 j+1) 2 \pi x]}{(2 j+1)^{\beta+1}}
$$

It is easy to show that $f \in C^{\beta-1}(\mathbb{R})$ and that $f^{(\beta)}$ is of bounded variation on $[0,1]$. Also, it is clear from (2) that $r_{2 n}(f)=0$ and

$$
r_{2 n+1}(f)=\frac{1}{(2 n+1)^{\beta+1}} \sum_{j=0}^{\infty} \frac{(-1)^{j+n}}{(2 j+1)^{\beta+1}} .
$$

This proves the first part of the theorem.
In the proof of the second part of the theorem, we define as in [2] the "saw-tooth" functions

$$
v_{n}(t)=\sum_{k=1}^{n} \chi(k-1 / 2) / n(t)-n t,
$$

where χ_{s} is the characteristic function of $[s, 1]$. Let $\left\{\epsilon_{n}\right\}$ be any sequence of real numbers tending to zero. We choose a sequence of positive integers $n_{k}, n_{1}<n_{2}<\cdots$, so large that whenever $j<p, n_{p} / n_{j}$ are odd integers and that for each $k=1,2, \ldots$, we have

$$
\begin{equation*}
\epsilon_{n_{k}} \leqslant \frac{1}{2^{k-1}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{(2 \pi j)^{\beta+2}} \tag{3}
\end{equation*}
$$

As in [2], we define our Lebesgue integrable function g by

$$
g(t)=\sum_{j=1}^{\infty} v_{n_{j}}(t) / 2^{j}
$$

Case (i). We first assume that β is even. Let

$$
f(t)=\sum_{m \neq 0} \frac{a_{m}(g)}{(i 2 \pi m)^{\beta+1}} e^{i 2 \pi m t}
$$

where the constants $a_{m}(g)$ are the Fourier coefficients of g. It is easy to show that $f \in C^{\beta-1}(\mathbb{R})$ and that $f^{(\beta)}$ is absolutely continuous on $[0,1]$ and $f^{(\beta)}(0)=f^{(\beta)}(1)$. We now study the behavior of $r_{n_{k}}(f)$. It is not difficult to show that the Fourier coefficients of v_{n} are

$$
a_{j}\left(v_{n}\right)= \begin{cases}\frac{n}{i 2 \pi j} e^{-i j \pi / n} & \text { if } n \text { is a factor of } j \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

By (2), we obtain for each k, using the fact that β is even and g is an odd function on \mathbb{R},

$$
\begin{aligned}
r_{n_{k}}(f) & =\sum_{j=1}^{\infty}\left\{\frac{a_{j n_{k}}(g)}{\left(j n_{k}\right)^{\beta+1}(i 2 \pi)^{\beta+1}}+\frac{a_{-j n_{k}}(g)}{\left(-j n_{k}\right)^{\beta+1}(i 2 \pi)^{\beta+1}}\right\} \\
& =\frac{2}{(i 2 \pi)^{\beta+1}} \frac{1}{n_{k}^{\beta+1}} \sum_{j=1}^{\infty} a_{j n_{k}}(g) / j^{\beta+1}
\end{aligned}
$$

By the definition of g and (4),

$$
\begin{align*}
n_{k}^{\beta+1} r_{n_{k}}(f) & =\frac{2}{(i 2 \pi)^{\beta+2}} \sum_{j=1}^{\infty} \frac{1}{j^{\beta+1}} \sum_{s=1}^{\infty} \frac{n_{s} e^{i \pi j n_{k} / n_{s}}}{2^{s} j n_{k}} \delta\left[\frac{j n_{k}}{n_{s}}\right] \tag{5}\\
& =\frac{2}{(i 2 \pi)^{\beta+2}} \sum_{s=1}^{\infty} \frac{n_{s}}{n_{k} 2^{s}} \sum_{j=1}^{\infty} \frac{1}{j^{\beta+2}} e^{i \pi j n_{k} / n_{s}} \delta\left[\frac{j n_{k}}{n_{s}}\right]
\end{align*}
$$

where we define $\delta[x]$ to be 1 if x is an integer and 0 otherwise.
Now, if $n_{s}>n_{k}$, then $n_{s}=n_{k} \mu$. Hence,

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{1}{j^{\beta+2}} e^{i \pi j n_{k} / n_{s}} \delta\left[\frac{j n_{k}}{n_{s}}\right] & =\sum_{j=1}^{\infty} \frac{e^{i n j / \mu}}{j^{\beta+2}} \delta\left[\frac{j}{\mu}\right] \\
& =\sum_{j=1}^{\infty}(-1)^{j} /(j \mu)^{\beta+2}<0
\end{aligned}
$$

Also, if $n_{k} \geqslant n_{s}$, then using the fact that n_{k} / n_{s} are odd, we have

$$
\sum_{j=1}^{\infty} \frac{1}{j^{\beta+2}} e^{i \pi j n_{k} / n_{s}} \delta\left[\frac{j n_{k}}{n_{s}}\right]=\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j^{\beta+2}}<0
$$

Therefore, by taking just one term in (5), we have

$$
-\frac{(i 2 \pi)^{\beta+2}}{2} n_{k}^{\beta+1} r_{n_{k}}(f)>\frac{n_{k}}{n_{k} 2^{k}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j^{\beta+2}}
$$

so that by (3),

$$
\left|n_{k}^{\beta+1} r_{n_{k}}(f)\right|>\frac{1}{2^{k-1}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{(2 \pi j)^{\beta+2}} \geqslant \epsilon_{n_{k}}
$$

Case (ii). We now let β be an odd integer. In this case, we use the "conjugate saw-tooth" functions

$$
u_{n}(t)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k} \cos 2 \pi k n t}{k}
$$

and consider

$$
h(t)=\sum_{j=1}^{\infty} u_{n_{j}}(t) / 2^{j}=\sum_{k=0}^{\infty} a_{k t}(h) \cos 2 \pi k t
$$

where the n_{j} are as chosen above. Since $\left|u_{n} \cdot\right|_{1} \leqslant 1$ for all n, h is a Lebesgue integrable function on $[0,1]$. We now define our f by

$$
f(t)=\sum_{m=1}^{\infty} \frac{2 a_{m}(h)}{(2 \pi m)^{\beta+1}} \cos 2 \pi m t
$$

Again, it is easy to see that $f \in C^{\beta-1}(\mathbb{R})$ and that $f^{(\beta)}$ is absolutely continuous on $[0,1]$ and $f^{(\beta)}(0)=f^{(\beta)}(1)$. By the same proof as in case (i), we also have

$$
\left|n^{\beta+1} r_{n}(f)\right| \geqslant \epsilon_{n}
$$

for all $n=n_{k}, k=1,2, \ldots$.
Proof of Theorem 3. If the theorem were false, then we could find a constant $C_{p}, 1 \leqslant p<\infty$, such that

$$
\begin{equation*}
\left|r_{n}(f)\right| \leqslant C_{\boldsymbol{p}}\|f\|_{p} \tag{6}
\end{equation*}
$$

for all functions f continuous on $[0,1]$. Consider

$$
f(t)=\sum_{k=1}^{m} e^{i 2 \pi n^{k_{t}}}
$$

It is clear that $r_{n}(f)=m,\|f\|_{2}=m^{1 / 2}$ and

$$
\begin{aligned}
\|f\|_{p}^{p} & \leqslant\|f\|_{\infty}^{p-1}\|f\|_{1} \\
& \leqslant\|f\|_{\infty}^{p-1}\|f\|_{2} \\
& =m^{p-1} m^{1 / 2}=m^{p-1 / 2}
\end{aligned}
$$

By (6), we have

$$
m \leqslant C_{p} m^{1-1 / 2 p}
$$

which is impossible for large m. This completes the proof of the theorem.

References

1. C. K. Chui, A convergence theorem for certain Riemann sums, Canad. Math. Bull. 12 (1969), 523-525.
2. C. K. Chur, Concerning rates of convergence of Riemann sums, J. Approximation Theory 4 (1971), 279-288.
3. G. Pólya und G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Vol. 1, SpringerVerlag, Berlin, 1964.
4. A. Zygmund, "Trigonometric Series," Cambridge University Press, New York, 1959.
