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1. INTRODUCTION AND RESULTS

If a function fis Riemann integrable on the unit interval [0, 1], we define
the Riemann coefficients of f as the errors

nh =3 510 - [

In [2], it was observed that the asymptotic behavior of r,(f) is quite similar
to that of the Fourier coefficient

a() = | o) et

of f. In this note, we give some precise results. In general, it seems that if
the periodic extension of f from [0, 1) to the real line R is ‘“‘smooth,” then
the coefficients r,(f) and a,(f) have the same rate of convergence to zero;
otherwise, it is probably true that a,(f) converges to zero “faster” than
ro(f) does—in the sense of Theorem 3 below. We first state the following
known theorem.

THeorReM A. (1) Iffsatisfies a Lipschitz condition of order o, 0 < o <C 1,
say

) —fI<M|x—yl
Jor some M < oo and all x, y € [0, 1), then both
ro(f) = O(/n*)  and  a,(f) = O(1/n).
(2) If fis of bounded variation on [0, 1], then both
r(f) = O0(1/n)  and  a,(f) = O(1/n).
(3) If fis absolutely continuous on [0, 1] and f(0) = f(1), then both

r(f) =o(l/n)  and  a,(f) = o(l/n).
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The proofs of (1) and (2) are similar and easy and can be found in [3, 4].
A proof of (3) was given in [1]. It should be noted that the above rates of
convergence are sharp (cf. {2]). Let C(R) be the collection of all S-times
continuously differentiable functions on R with f(¢) = f(1 + ¢) for all .
We have the following theorem.

THEOREM 1. Let 8= 1 and fe CEYR). If f® is of bounded variation
on [0, 1], then

rof) = O(1/nP+).
If f® is absolutely continuous on [0, 1], and f®(0) = f¥(1), then
ro(f) = o(1/n*1).

It is known that the a,(f) have the same rates of decay as r,(f) in the
above theorem and these rates cannot be improved (cf. [4]). We will show
that the above rates of convergence of r,(f) to zero are also sharp, as in
the following theorem.

THEOREM 2. (1) There exist an €, > 0 and a function e C*~YR) such
that {® s of bounded variation on [0, 1] and

| 5 ()] = €

for some sequence n = n; — .

(2) Let {¢,} be any sequence of real numbers tending to zero. There
exists a function fe CE~Y(R) such that f'® is absolutely continuous on [0, 1],
79O = £9(1) and

P (f)] = en

for some sequence n = n;, — 0.

It is clear that if f is continuous on [0, 1], then

P < U = |[ 151

1/p

for all n, where 1 < p << . Actually, for 1 < p <2, we even have the
stronger inequality
s LaDP ey

2—p
n=1 n

for some constant C, independent of f. However, for Riemann coefficients
we have the following theorem.
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THEOREM 3. Let 1 < p < o0. For any positive integer n and any constant
C > 0, there exists a continuous function f on [0, 1] such that | r,(f)| > ClI fl, .

But for p = oo, it is clear that | a,(f)] < flle and | r,(f)] <2 fll -

2. PROOFS OF THE ABOVE RESULTS

Proof of Theorem 1. 1If fe C5-Y(R) and f® is of bounded variation on
[0, 1], then

a,(f) = J: £(t) e=i2mnt g — (1_2%1? J'Ol f©)() e-izmnt g

= (9O — FEN 2+ s [ e dpen, (1)

so that | a,(f)| << M/rB+ for all n, with M = | fB(0)] + | fE(1)] + V(f®),
where V(f'®) denotes the total variation of f® on [0, 1]. Hence,

) =1 574 - [r

]*1

= 3 13 alf) e — af))
k———rx: i=1 (2)

o]

= Z alm(f) - aO(f)

k=—o0

_ i [ f) + @_ial ).

Therefore, by (1)

D < e S

B
n -1

If, in addition f'®) is absolutely continuous on [0, 1] and f®(0) = f@(1),
then by (2) and (1) we have

| F

1
< nBt1 Z (2,,Tk)B+1

f f8(t) cos 2mknt dt |.
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Since the integrals inside the absolute value signs tend to zero uniformly on &,
we have n®+lr (f) — 0. This completes the proof of Theorem 1.

Proof of Theorem 2. For B = 1, we let

o (—1) 27 1) 27
Jx) = Z (1) ((:;;[El_jl;ﬂ) x] -

=0
It is easy to show that f'< C*~(R) and that f*® is of bounded variation on
[0, 1]. Also, it is clear from (2) that ry,(f) = 0 and
b _1)7+7L

r2n+1(f) (2n + 1)3+1 Z (2J + 1)B+1

This proves the first part of the theorem.
In the proof of the second part of the theorem, we define as in [2] the
“saw-tooth” functions

Ua(t) = Z Xte—1/2)/n(f) — 1t
k=1

where y, is the characteristic function of [s, 1]. Let {¢,} be any sequence of
real numbers tending to zero. We choose a sequence of positive integers
Ry, Ny <ny < -, so large that whenever j <p, n,/n; are odd integers
and that for each k = 1, 2,..., we have

2 (=1 )j+1

&)

€ny <

As in [2], we define our Lebesgue integrable function g by

o

gty = Y v, (8)/27.

i=1

Case (i). We first assume that S is even. Let

— a”‘(g) i2nmt
Ju) = ,Z;O @2mmyE €
where the constants a,,(g) are the Fourier coefficients of g. It is easy to show
that fe C#}(R) and that f'® is absolutely continuous on [0,1] and
f®(0) = f¥(1). We now study the behavior of r, (f). It is not difficult to
show that the Fourier coeflicients of v, are

—— e~tT/n if n is a factor of j,
ava) = | T2mj aacior otJ
0 otherwise.

)
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By (2), we obtain for each k, using the fact that 8 is even and g is an odd
function on R,

ank(g) a—j"k(g)
r.(f) = § ()Pt (12m)pt + (— )Pt (12m)fH
2 1

= @y g o

By the definition of g and (4),

2 © 1 znmklns ]n
B8+1 . k
ny "nk(f) = (i12m)P e ;;1 jB-Hs; 2%y, 8 [ n, ] )
« 1 _ piminging jnk
(1217)‘”2 gl ny, 23 ;1]B+2 8 [ n, ]’
where we define 5[x] to be 1 if x is an integer and 0 otherwise.

Now, if n, > n;, then n, = n,u. Hence,

L g s [ ] S €T T
_z:lj—'fﬂ_zezmkns[nsklzz i 8[__]
=

j=1 - ©

fl
Ms

(=12 < 0.

1

.
I

Also, if n, = n,, then using the fact that n,/n, are odd, we have

i ~1_ T § []nk ] Z B+2

Therefore, by taking just one term in (5), we have

(i2m)e+2 (—1)y+
— ——2— ni*‘lrnk(f) > nk2’“ Z B+2 s

so that by (3),

«© __1)1+1
§ Gyt = m

| 7 (> 5
Case (ii). We now let B be an odd integer. In this case, we use the

“conjugate saw-tooth” functions

X (1)
Un(t) = % Z (=D Czs 2mknt ,
x=1
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and consider

* o

h(t) = 3 u, (1)/2 = Y ayh) cos 2mkt,

j=1 l=0

where the n; are as chosen above. Since | v, '; < 1 for all n, / is a Lebesgue
integrable function on [0, 1]. We now define our f by

fly=3% 2am§21 cos 2mmt.
m=1

Again, it is easy to see that € C*~}(R) and that f'® is absolutely continuous
on [0, 1] and f®(0) = f*)(1). By the same proof as in case (i), we also have

| n*Hr ()] 2 e
foralln=mn,,k=1,2,...

Proof of Theorem 3. If the theorem were false, then we could find a
constant C,,, 1 < p < 0, such that

e < Coll Sl (6)

for all functions f continuous on [0, 1]. Consider

m

f(T) — Z etmnft

k=1

It is clear that r,(f) = m, || fll, = m*/? and

1Al < LA
< A2 Sl

— mPiml/2 = mr-lre,

By (6), we have
m < C,mt1/2e,

which is impossible for large m. This completes the proof of the theorem.
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